Automorphism group of the modified bubble-sort graph
نویسنده
چکیده
The modified bubble-sort graph of dimension n is the Cayley graph of Sn generated by n cyclically adjacent transpositions. In the present paper, it is shown that the automorphism group of the modified bubble sort graph of dimension n is Sn×D2n, for all n ≥ 5. Thus, a complete structural description of the automorphism group of the modified bubble-sort graph is obtained. A similar direct product decomposition is seen to hold for arbitrary normal Cayley graphs generated by transposition sets. Index terms — modified bubble-sort graph; automorphism group; Cayley graphs; transposition sets.
منابع مشابه
On the automorphism group of Cayley graphs generated by transpositions
The modified bubble-sort graph of dimension n is the Cayley graph of Sn generated by n cyclically adjacent transpositions. In the present paper, it is shown that the automorphism group of the modified bubble sort graph of dimension n is Sn × D2n, for all n ≥ 5. Thus, a complete structural description of the automorphism group of the modified bubble-sort graph is obtained. A similar direct produ...
متن کاملAutomorphism group of the modified bubble sort graph and its generalizations
Let S be a set of transpositions generating the symmetric group Sn, where n ≥ 3. It is shown that if the girth of the transposition graph of S is at least 5, then the automorphism group of the Cayley graph Cay(Sn, S) is the direct product Sn×Aut(T (S)), where T (S) is the transposition graph of S; the direct factors are the right regular representation of Sn and the image of the left regular ac...
متن کاملAutomorphism groups of Cayley graphs generated by connected transposition sets
Let S be a set of transpositions that generates the symmetric group Sn, where n ≥ 3. The transposition graph T (S) is defined to be the graph with vertex set {1, . . . , n} and with vertices i and j being adjacent in T (S) whenever (i, j) ∈ S. We prove that if the girth of the transposition graph T (S) is at least 5, then the automorphism group of the Cayley graph Cay(Sn, S) is the semidirect p...
متن کاملThe automorphism group of the reduced complete-empty $X-$join of graphs
Suppose $X$ is a simple graph. The $X-$join $Gamma$ of a set ofcomplete or empty graphs ${X_x }_{x in V(X)}$ is a simple graph with the following vertex and edge sets:begin{eqnarray*}V(Gamma) &=& {(x,y) | x in V(X) & y inV(X_x) },\ E(Gamma) &=& {(x,y)(x^prime,y^prime) | xx^prime in E(X) or else x = x^prime & yy^prime in E(X_x)}.end{eqnarray*}The $X-$join graph $Gamma$ is said to be re...
متن کاملTHE AUTOMORPHISM GROUP OF FINITE GRAPHS
Let G = (V,E) be a simple graph with exactly n vertices and m edges. The aim of this paper is a new method for investigating nontriviality of the automorphism group of graphs. To do this, we prove that if |E| >=[(n - 1)2/2] then |Aut(G)|>1 and |Aut(G)| is even number.
متن کامل