Automorphism group of the modified bubble-sort graph

نویسنده

  • Ashwin Ganesan
چکیده

The modified bubble-sort graph of dimension n is the Cayley graph of Sn generated by n cyclically adjacent transpositions. In the present paper, it is shown that the automorphism group of the modified bubble sort graph of dimension n is Sn×D2n, for all n ≥ 5. Thus, a complete structural description of the automorphism group of the modified bubble-sort graph is obtained. A similar direct product decomposition is seen to hold for arbitrary normal Cayley graphs generated by transposition sets. Index terms — modified bubble-sort graph; automorphism group; Cayley graphs; transposition sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the automorphism group of Cayley graphs generated by transpositions

The modified bubble-sort graph of dimension n is the Cayley graph of Sn generated by n cyclically adjacent transpositions. In the present paper, it is shown that the automorphism group of the modified bubble sort graph of dimension n is Sn × D2n, for all n ≥ 5. Thus, a complete structural description of the automorphism group of the modified bubble-sort graph is obtained. A similar direct produ...

متن کامل

Automorphism group of the modified bubble sort graph and its generalizations

Let S be a set of transpositions generating the symmetric group Sn, where n ≥ 3. It is shown that if the girth of the transposition graph of S is at least 5, then the automorphism group of the Cayley graph Cay(Sn, S) is the direct product Sn×Aut(T (S)), where T (S) is the transposition graph of S; the direct factors are the right regular representation of Sn and the image of the left regular ac...

متن کامل

Automorphism groups of Cayley graphs generated by connected transposition sets

Let S be a set of transpositions that generates the symmetric group Sn, where n ≥ 3. The transposition graph T (S) is defined to be the graph with vertex set {1, . . . , n} and with vertices i and j being adjacent in T (S) whenever (i, j) ∈ S. We prove that if the girth of the transposition graph T (S) is at least 5, then the automorphism group of the Cayley graph Cay(Sn, S) is the semidirect p...

متن کامل

The automorphism group of the reduced complete-empty $X-$join of graphs

Suppose $X$ is a simple graph. The $X-$join $Gamma$ of a set ofcomplete or empty graphs ${X_x }_{x in V(X)}$ is a simple graph with the following vertex and edge sets:begin{eqnarray*}V(Gamma) &=& {(x,y) | x in V(X) & y inV(X_x) },\ E(Gamma) &=& {(x,y)(x^prime,y^prime) | xx^prime in E(X) or else x = x^prime & yy^prime in E(X_x)}.end{eqnarray*}The $X-$join graph $Gamma$ is said to be re...

متن کامل

THE AUTOMORPHISM GROUP OF FINITE GRAPHS

Let G = (V,E) be a simple graph with exactly n vertices and m edges. The aim of this paper is a new method for investigating nontriviality of the automorphism group of graphs. To do this, we prove that if |E| >=[(n - 1)2/2] then |Aut(G)|>1 and |Aut(G)| is even number.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015